Reasonable non–Radon–Nikodym idealss

نویسندگان

  • Vladimir Kanovei
  • Vassily Lyubetsky
چکیده

For any abelian Polish σ-compact group H there exist an Fσ ideal Z ⊆ P (N) and a Borel Z -approximate homomorphism f : H → HN which is not Z -approximable by a continuous true homomorphism g : H → HN .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LEBESQUE-RADON-NIKODYM THEOREM WITH RESPECT TO FERMIONIC p-ADIC INVARIANT MEASURE ON Zp

In this paper we derive the analogue of the Lebesque-Radon-Nikodym theorem with respect to fermionic p-adic invariant measure on Zp. 2010 Mathematics Subject Classification : 11S80, 48B22, 28B99

متن کامل

Computability of the Radon-Nikodym Derivative

We show that computability of the Radon-Nikodym derivative of a measure μ absolutely continuous w.r.t. some other measure λ can be reduced to a single application of the non-computable operator EC, which transforms enumeration of sets (in N) to their characteristic functions. We also give a condition on the two measures (in terms of the computability of the norm of a certain linear operator inv...

متن کامل

The Radon-Nikodym Theorem for Reflexive Banach Spaces El Teorema de Radon-Nikodym para Espacios de Banach Reflexivos

In this short paper we prove the equivalence between the RadonNikodym Theorem for reflexive Banach spaces and the representability of weakly compact operators with domain L(μ).

متن کامل

The near Radon-nikodym Property in Lebesgue-bochner Function Spaces

Let X be a Banach space and (Ω,Σ, λ) be a finite measure space, 1 ≤ p < ∞. It is shown that L(λ,X) has the Near Radon-Nikodym property if and only if X has it. Similarly if E is a Köthe function space that does not contain a copy of c0, then E(X) has the Near Radon-Nikodym property if and only if X does.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008